
Move sequence detection on bouldering problems
Charles Beauville - 283103

Data Science
Robin Debalme - 282406

Data Science
Théo Patron - 284555
Comp. Science & Eng.

Abstract—The goal of this project was to detect the move
sequence of a boulder using bouldering videos.
We were provided a dataset of videos. In this dataset, we first
selected good videos and stabilised them. We then labeled all the
usable videos for further preproccessing like cropping, cutting or
taking a screenshot for visualization. Afterward, we ran a pose
estimation algorithm in order to get the coordinates of the body
parts of the climbers. We used this data to detect the moves of the
boulder problem and we found the sequence using a clustering
algorithm. Finally, we implemented some visualization functions
to show our results.
We were pretty impressed with our results, the program outputs
the right move sequence.

I. INTRODUCTION

Bouldering is a form of climbing where the climber climbs
small rock formations or artificial rock walls without the
use of ropes. In 2016, the International Olympic Committee
(IOC) officially approved climbing including bouldering as
an Olympic sport. Bouldering ”problems” have their own
solution, and to successfully climb it the climber need to work
it out. This solution can be seen as a move sequence the
climber has to do to reach the top. A move sequence consists
of the order in which the climber has to take the holds and
which body part he has to use for the different holds. Working
with the Swiss Olympic Climbing team lead, we set out to
detect and visualize the move sequence of a climber based on
a video. This can later be useful to compare holds between
a succesful climb and a failed one, to label a dataset or train
a more complex model. There is little previous research we
could find in this field, the most relevant one was an unfinished
project [1] which aims at predicting the positions of the holds
on the climbing wall given a picture.

II. DATASET

A. Original

Urs Stöcker (Swiss Olympic team leader, and formerly
German Olympic team leader) provided us with a dataset of
bouldering videos. These videos are from between 2017 and
2021 and are recordings of German athletes during bouldering
competitions. The dataset is composed of 3307 videos.

B. Preprocessing

Some videos were not stable, or of bad quality. Thus,
a very important part of the project was the selection and
the preprocessing. Those steps are described in the following
sections.

1) Selecting the data: The first step was to remove unusable
videos. By watching all the videos, we selected the static and
not blurry videos. To avoid having too few videos (as almost
all the videos were not static, i.e. the camera was moving),
we also kept semi-static videos. We removed the videos where
a person is passing in front of the camera at some moments.
Finally, all the kept videos have been sorted in different folders
to have one folder per boulder problem.

2) Stabilisation: As most of the remaining videos were not
static, stabilisation was required to obtain a good final result.
Indeed, the move sequence is in the end printed on a screenshot
of the video, and if the camera is moving, the holds are not
always at the same place during the video. As the dataset is
hosted on Google Drive and is too heavy to be downloaded,
we had to work with Colab and to perform the stabilisation
with python. This has been done using the VidStab library
than can be plugged-in with FFmpeg. The parameter used
is ’smoothing=0’ to simulate a static camera. Using OS and
Subprocess libraries, we have been able to run the VidStab
batch command to all the videos in all subfolders.

3) Data labeling: In order to have some metadata about
each video, we had to watch the stabilized videos to fill
an Excel sheet with different information. We reported the
filename, the gender of the climber, its name, the success level
(if the climber failed, reached the zone, or reached the top),
and the competition. This allowed us to remove the videos
where stabilisation failed, i.e. when the video is still too shaky.
For videos with multiple climbing attempts, we also reported
time_start and time_end in order to crop the video to
keep only one attempt. For videos with multiple climbers in
it, or with other visible persons, we also reported crop_x,
crop_x_side, crop_y and crop_y_side. Indeed, as we
will see later, pose estimation works better when only one
person is visible. We used the following convention:

• crop_x/y is a percentage of what we want to keep.
• crop_x_side/y_side can take the following values:

’left’, ’right’, ’center’ for x, and ’top’, ’bottom’, ’center’
for y.

To be clearer, here are two examples:
- x: 60% right and y: 100% center means that we keep all the
height but only the 60% on the right side (i.e. we remove the
40% of the image on the left).
- x: 80% center and y: 80% top means that we remove 10%
on the left, 10% percent on the right (so we keep 80% of the
width in the center), and we remove 20% on the bottom of
the image (we keep 80% of the height).



Finally, we reported a moment of the video where we could
take a screenshot in order to have an image of the boulder
problem (if possible, we chose a moment when a climber is
not on the wall in order to be able to see all the holds).

4) Video cropping and screenshot: In order to crop the
video in time and to take a screenshot at the reported time,
we used the FFmpeg library.
To crop the video in space, we used the OpenCV library (in
the code, we crop each image just before the pose estimation).

III. POSE ESTIMATION

Several pose estimation frameworks exist, such as Medi-
aPipe from Google [2] or OpenPifPaf from EPFL [3]. Both
achieves comparable results on our dataset but MediaPipe is
a lot faster. As the dataset is big and as it take some time to
process each video, we decided to go with MediaPipe. This
framework runs pose estimation image by image and works
only with one person. To ensure that the right person (i.e.
the climber) is selected for pose estimation, we cropped our
videos to remove other persons. A landmark object is created
when the pose is obtained. As MediaPipe (surprisingly) does
not have a function to output the landmark object to a file, we
handmade a function that saves all the landmarks of a video to
a json file as a dictionary. The obtained landmarks are shown
in Figure 1. At this stage, we then have a json file containing
the pose estimation landmarks and a photo of the associated
boulder problem, this allows us to start working on the move
sequence detection. A visibility number (between 0 and 1) is
also returned by the pose detection, it indicates how visible is
the body part. It can be interpreted as a confidence indicator.

Fig. 1: 33 pose landmarks.

A. Static extremities detection

To detect the holds, we have converted the landmark json
file to a panda dataframe for simplicity of use. To get the best
approximation of the position of the body’s extremities (hands
and feet), we defined the coordinates as the weighted average
of different landmarks using their visibility as the weights:

• wrist, pinky, index and the thumb for the hands.
• foot index, heel, and ankle for the feet.

Then we implemented a method to detect if an extremity
is static. The function check_hold allows us to store in a

list the coordinates where a given extremity is static. The idea
of this method is to compute the difference of an extremity’s
coordinates in a given frame with the following n frames. For
example if n = 30, we will compute all the differences of
the coordinates between the given ith frame and the following
30 frames. If all these computed values are smaller than a
threshold, it means that the extremity didn’t move through
these frames. Then the extremity is considered fixed on the ith

frame. This is applied for the all frame of the video, to get
every frame where the extremity is fixed and its coordinates.

We used this function for all the extremities on each video
to get clouds of points for each of them. Each point represents
the extremity being static on a given frame (i.e. the climber
either holding a hold or taking support on the wall), see Figure
2 for an example.

In this method we have two hyper-parameters, the threshold
which represent the maximum absolute ’displacement’ of an
extremity to be still considered as fixed and the number of
frames we use for the movable difference.

A threshold too big makes the borders of the clouds of
points more complex to find for the clustering algorithm
(because we have more points). With a too big number of
frame or a too small threshold, we could not detect all the
holds, especially when the climber is moving fast. A too
small number of frame make slow moves to be considered
as holds. Thus, after different trials of set of hyper-parameters
on different boulder problems, we found that threshold = 0.02
and number of frames = 30 was a very good trade-off between
the number of holds detected and the ease of clustering.

Fig. 2: Visualization of clouds of points for right hand.

Despite our stabilization, the camera can still be slightly
moving, thus, the coordinate of a given point on the screenshot
is not exactly the same during all the video. This is why we
sometimes observe clusters of points that are not exactly on
a hold but slightly shifted. A perfectly static video would fix
this issue.



B. Clustering

Thanks to the function check_hold, we got clouds of
points for each member at different places on the screenshot.
The next step is to cluster those points into different groups,
each one corresponding to one move.

To do so, the well-known DBSCAN [4] unsupervised clus-
tering algorithm is used. This algorithm allows to cluster points
together without specifying the desired number of clusters
(as the number of move of one extremity changes between
different boulder problems, or even between different move
sequence of the same boulder problem, we do not have this
number).

The algorithm is appropriate since it also allows to classify
some points as noise. Indeed, if the previous ’static extremity
detection’ algorithm added only a few points at one place
(because the extremity stayed still but for a short amount of
time), it can be either a quick move or a noise (pure noise, or
a move that is not part of the move sequence, e.g. the athlete
quickly tested a hold but decided not to use it for the next
move). Therefore this algorithm will be able to remove noisy
points as part of the move sequence.

The algorithm has two hyper-parameters that have to be
tuned: ϵ, the maximum distance between two points for one
to be considered as in the neighborhood of the other, and
min samples, the number of points in a neighborhood for a
point to be considered as a core point. We refer to the paper
[4] for a detailed explanation of those parameters.

As we have no precise accuracy measure, the optimization
has to be done by hand. To do that, the clusters are computed
for different values of each hyper-parameters (an example is
shown in Figure 3 and 4). This is done for a lot of different
boulder problems and each time the best hyper-parameters are
chosen. We then aggregated the results and the chosen param-
eters are the following: ϵ = 0.03 and min samples = 20.

To illustrate this, the following Figures 3 and 4 are
the clusters computed using the algorithm. On Figure 3,
min samples is fixed to 20 and ϵ is varying between 0.01
and 0.08. In the title of each plot n = x represent the number
of different clusters. Each color represents a cluster and the
black points are the ones considered as noise. As can be
seen, the number of computed clusters is increasing when ϵ
is decreasing. This number is between 4 and 6 (5 being the
right choice here). For a too low ϵ (ϵ = 0.01), the first move
(bottom left) is classified as two different moves, and part of
the two last moves are considered as noise. For a too large ϵ
(ϵ ≥ 0.06), the two last moves are considered as one single
move. ϵ = 0.03, 0.04, 0.05 works perfectly here (the black
points at the bottom right are indeed noisy points).

Fig. 3: Clusters computed with DBSCAN using
min samples = 20 and ϵ varying between 0.01 and
0.08.

On Figure 4, ϵ is fixed to 0.03 and min samples is varying
between 1 and 200. As can be seen, for a min samples value
too low (= 1), the noisy points at the bottom right are not
considered as noise. For a min samples too large (≥ 75), the
last hold is wrongly considered as noise. For min samples
between 5 and 50, the cluster computation is perfect. By doing
this analysis for each extremity on different boulder problems,
we chose the hyper-parameters stated above.

Fig. 4: Clusters computed with DBSCAN using ϵ = 0.03 and
min samples varying between 1 and 200.

As we wanted to work in an unsupervised way, i.e. use
the same hyper-parameters for all the bouldering problems,
the algorithm cannot be perfect. Indeed, a quick move on one
boulder problem can lead to the same points as noisy points



on another problem. To reach perfect accuracy, the hyper-
parameters could be fine tuned on for each video, but it was
not the point here. However, after testing our algorithm on a
broad set of videos, the results are quite impressive and totally
satisfying.

C. Visualisation

To visualize our results and checked their accuracy, we used
OpenCV to draw on the screenshots of the boulders. As we
can see on Figures 5 and 7 each square represents a hold
or a support against the wall and is numbered to show the
chronology of the sequence. This gives a clear representation
of the moves sequence output by the algorithm. To improve
further the readability of our results, we have used GIF, an
example can be seen here.

IV. RESULTS

A. Fail / Success move sequence comparison

Here we focus on a new boulder problem for which we
have a video of a success and one of a fail. The Figure 7
shows the two associated move sequences. As can be seen,
apart from the first left foot, that is not detected on the fail
sequence (because the foot is actually on the border of the
image so the pose estimation is not consistent), the rest of the
move sequence is the same until move 8 (using the numbering
of the left image). Then, on the success, the climber directly
reach the next hold with her right hand (move 9). On the fail,
the climber try to move her left foot upper, on the black hold
(move 8 and 9), then put her right hand on the same hold as
her left hand (move 101), then she falls. Those move sequences
allowed us to see where the second climber did wrong.

Fig. 5: Success (left image) vs fail (right image) move se-
quences.

B. Accuracy

To check the robustness of our algorithm, a truly new dataset
was needed (different camera and different boulder problems).

1The move 10 green square is a bit upper than the hold she actually grabs,
this is because the camera is pointing more and more to the bottom after the
screenshot is taken.

We thus recorded us climbing and tested our algorithms
on our videos. The results were consistent with what we
obtained before. This lead us to think that our process can be
generalized to other datasets. Our test dataset is composed of
27 videos of 12 different boulders. We considered that there is
an error in the sequence when a holds is missed, added or not
in the order it should be compared to the sequence we can see
on the video. For example adding a hold and having 2 holds
not in the right order is considered to be 3 errors. On Figure
6 we can see that for 88% of the videos, the algorithm made
two error or less. This is to our mind acceptable given that the
boulders studied here are between 13 and 25 moves long. On
the Figure 7, the move sequence given by the algorithm is the
same as when done by hand except that the movement of the
camera during the video shifts the algorithm move sequence
upward and a first right foot is labeled (move 2) while the
climber was still on the ground. This is not considered as an
error because it is labeled before the beginning of the climb.

Fig. 6: Distribution of the number of errors in the move
sequence given by the algorithm.

Fig. 7: Move sequence labeled using our algorithms (upper
image) and by hand (lower image).

V. CONCLUSION

The results we obtained are quite convincing and can be
generalized to other datasets. They could be used to as input
for a model predicting the success rate of an athlete given a
particular problem, or even while trying to predict the most
successful route or move sequence. Some metrics could also
be used to estimate the ’distance’ between two routes.

https://github.com/CS-433/ml-project-2-bouldering_team1/blob/master/docs/res.gif


REFERENCES

[1] Sean Csusak. Identification and classification of holds for a rock climbing
wall. https://github.com/scsukas8/NeuralClimb, 2016.

[2] Camillo Lugaresi, Jiuqiang Tang, Hadon Nash, Chris McClanahan, Esha
Uboweja, Michael Hays, Fan Zhang, Chuo-Ling Chang, Ming Yong,
Juhyun Lee, Wan-Teh Chang, Wei Hua, Manfred Georg, and Matthias
Grundmann. Mediapipe: A framework for building perception pipelines,
06 2019.

[3] Sven Kreiss, Lorenzo Bertoni, and Alexandre Alahi. Openpifpaf:
Composite fields for semantic keypoint detection and spatio-temporal
association, 2021.

[4] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A
density-based algorithm for discovering clusters in large spatial databases
with noise. In Proceedings of the Second International Conference on
Knowledge Discovery and Data Mining, KDD’96, page 226–231. AAAI
Press, 1996.

https://github.com/scsukas8/NeuralClimb

	Introduction
	Dataset
	Original
	Preprocessing
	Selecting the data
	Stabilisation
	Data labeling
	Video cropping and screenshot


	Pose estimation
	Static extremities detection
	Clustering
	Visualisation

	Results
	Fail / Success move sequence comparison
	Accuracy

	Conclusion
	References

